
OAuth 2.0

0Auth 2.0

What is SAML, and why does it 
exist?

What is OAuth 2.0?

OAuth 2.0 is a delegation 
protocol, a means of letting 
someone who controls a resource 
allow a software application to 
access that resource on their 
behalf without impersonating 
them.
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Token

The application requests 
authorization from the owner

30

of the resource and receives 
tokens that it can use to access 
the resource

OAuth tokens can limit the client’s 
access to only the actions that the 
resource owner has delegated.
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Anology: Valet key

you can think of the OAuth token 
as a “valet key” for the web

31

The valet key of a car allows the 
owner of the car to give limited 
access to someone, the valet, 
without handing over full control 
in the form of the owner’s key

33 Definition

The OAuth 2.0 authorization 
framework enables a third-party 
application to obtain limited 
access to an HTTP service, either 
on behalf of a resource owner by 
orchestrating an approval 
interaction between the resource 
owner and the HTTP service, or 
by allowing the third-party 
application to obtain access on its 
own behalf
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History

The bad old days: 
credential sharing (and 
credential theft)
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Delegating access

Summary

What if we were able to have this 
kind of limited credential, issued 
separately for each client and 
each user combination, to be 
used at a protected resource? We 
could then tie limited rights to 
each of these limited credentials. 
What if there were a 
networkbased protocol that 
allowed the generation and 
secure distribution of these 
limited credentials across security 
boundaries in a way that’s both 
user-friendly and scalable to the 
internet as a whole?
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password antipattern

a shared secret (the password) 
directly represents the party in 
question (the user)
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copy the user’s 
credentials and replay 
them on another service

This approach requires that the 
user have the same credentials at 
the client application and the 
protected resource, which limits 
the effectiveness of this 
credential-theft technique to a 
single security domain.
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what if the two services occupied 
different security domains,

35

To keep accessing the API, the 
client application will store the 
user’s credentials so that they 
can be replayed as needed. This 
is an extremely dangerous 
practice, since the compromise 
of any client in use will lead to 
a full compromise of that 
user’s account across all 
systems

developer key

the developer key acts as a kind 
of universal key that allows the 
client to impersonate any user 
that it chooses
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the client effectively has free rein 
over the data on the protected 
resource.

37

give users a special 
password

37

Users don’t use this password to 
log in themselves, but paste it into 
applications that they want to 
work for them

This requires the user to 
generate, distribute, and manage 
these special credentials in 
addition to the primary passwords 
they already must curate
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Since it’s the user who must 
manage these credentials, there 
is also, generally speaking, no 
correlation between the client 
program and the credential 
itself. This makes it difficult to 
revoke access to a specific 
application
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Delegating access

OAuth is a protocol designed to 
do exactly that: in OAuth, the end 
user delegates some part of their 
authority to access the protected 
resource to the client application 
to act on their behalf

38

Summary
47

authorization server
38

This is the component that 
enables delegation

The authorization server (AS) is 
trusted by the protected resource 
to issue specialpurpose security 
credentials—called OAuth access 
tokens—to clients

Journey
38

At no time in this process are the 
resource owner’s credentials 
exposed to the client

Clients can then manage the 
tokens, and users can manage 
the client applications

To acquire a token, the client first 
sends the resource owner to the 
authorization server in order to 
request that the resource owner 
authorize this client
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The resource owner 
authenticates to the authorization 
server and is generally presented 
with a choice of whether to 
authorize the client making the 
request
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The client is able to ask for a 
subset of functionality, or scopes, 
which the resource owner may be 
able to further diminish
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Once the authorization grant has 
been made, the client can then 
request an access token from the 
authorization server
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This access token can be used at 
the protected resource to access 
the API, as granted by the 
resource owner
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it is a delegation protocol

41

Generally, a subset of a user’s 
authorization is delegated, but 
OAuth itself doesn’t carry or 
convey the authorizations. 
Instead, it provides a means by 
which a client can request that a 
user delegate some of their 
authority to it. The user can then 
approve this request, and the 
client can then act on it with the 
results of that approval
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TOFU: Trust On First Use

In a TOFU model, the first time a 
security decision needs to be 
made at runtime
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The system offers to remember 
this decision for later use. In other 
words, the first time an 
authorization context is met, the 
system can be directed to trust 
the user’s decision for later 
processing: Trust On First Use
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What OAuth 2.0 isn’t

45

OAuth isn’t defined 
outside of the HTTP 
protocol.

Sensitive secrets and information 
are passed over the wire, and 
OAuth requires a transport layer 
mechanism such as TLS to 
protect these secrets
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OAuth isn’t an 
authentication protocol

OAuth transaction on its own tells 
you nothing about who the user 
is, or even if they’re there
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OAuth doesn’t define 
a token format

the content of the token is 
completely opaque to the 
client application

This is a departure from previous 
security protocols such as WS-*, 
Security Assertion Markup 
Language (SAML)
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However, the token still 
needs to be understood by 
the authorization server that 
issues it and the protected 
resource that accepts it

led to the development of the 
JSON Web Token (JWT)

46

HTTP Basic Auth
40

HTTP Digest Auth

This all makes sense in light of 
HTTP’s origins as a document 
access protocol

both assume the presence of a 
user

40

Not good for.....

for direct-access APIs

40 Solution

OAuth was designed from the 
outset as a protocol for use with 
APIs
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effectively require the 
presentation of a username and 
password to the HTTP server

40

assumed that these credentials 
will be presented again on every 
single transaction

40

The OAuth dance

48

two major steps

two major steps to an OAuth 
transaction: issuing a token and 
using a token.

48

the canonical OAuth 
transaction

49

OAuth 2.0 authorization grant in 
detail

authorization 
endpoint

Since we have a web client, 
this takes the form of an 
HTTP redirect to the 
authorization server’s 
authorization endpoint. The 
response from the client 
application looks like this

This redirect to the browser 
causes the browser to send an 
HTTP GET to the authorization 
server.

52

Resource owner 
authenticates to the 
authorization server

The user’s authentication passes 
directly between the user (and 
their browser) and the 
authorization server; it’s never 
seen by the client application. 
This essential aspect protects 
the user from having to share 
their credentials with the client 
application
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Resource owner 
authorizes the client

OAuth doesn’t dictate the 
authentication technology, and 
the authorization server is free to 
choose methods such as a 
username/password pair, 
cryptographic certificates, security 
tokens, federated single-sign-on, 
or any number of other 
possibilities
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Authorization server 
redirects resource 
owner back to the 
client with an 
authorization code

Client sends the 
authorization code to 
the authorization 
server’s  token 
endpoint

ensures that the client can 
authenticate itself directly 
without other components 
being able to see or 
manipulate the token 
request

passing its client_id and 
client_secret

55

Authorization server 
issues an OAuth 
access token to the 
client

The authorization server 
takes in this request and, if 
valid, issues a token

. If the authorization code is valid, 
has not been used previously, 
and the client making this request 
is the same as the client that 
made the original request, the 
authorization server generates 
and returns a new access token 
for the client
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The client can store this access 
token in a secure place for as 
long as it wants to use the token, 
even after the user has left
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bearer tokens

anyone who carries the token has 
the right to use it.
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Client accesses the 
protected resource using 
the access token
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OAuth’s actors

58

client

a piece of software that 
attempts to access the 
protected resource on 
behalf of the resource 
owner

the client is generally the simplest 
component in an OAuth system
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its responsibilities are largely 
centered on obtaining tokens 
from the authorization server and 
using tokens at the protected 
resource
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protected resource

available through an HTTP 
server and it requires an 
OAuth token to be accessed

needs to validate the tokens 
presented to it and determine 
whether and how to serve 
requests
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resource owner

the entity that has the 
authority to delegate access 
to the client

is the person using the client 
software
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authorization server

an HTTP server that acts as 
the central component to an 
OAuth system

The authorization server 
authenticates the resource 
owner and client, provides 
mechanisms for allowing 
resource owners to authorize 
clients, and issues tokens to the 
client
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OAuth’s components
59

These are the bits that connect 
the actors in the previous section 
in a larger protocol

Access tokens

is an artifact issued by the 
authorization server to a client 
that indicates the rights that the 
client has been delegated.

59 represents

the combination of the client’s 
requested access, the resource 
owner that authorized the client, 
and the rights conferred during 
that authorization

59

client

opaque to the client

59

authorization server’s

the authorization server’s job is to 
issue the token

59

protected resource’s

the protected resource’s job is to 
validate the token
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Scopes

a representation of a set of rights 
at a protected resource.
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Refresh tokens

the token is never sent to the 
protected resource.

60

the client uses the refresh token 
to request new access tokens 
without involving the resource 
owner

Why

In OAuth, an access token 
could stop working for a 
client at any point

what if the resource owner’s 
no longer there

tokens in OAuth 1.0 tended to live 
forever until explicitly revoked
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In OAuth 2.0, access tokens 
were given the option to 
expire automatically

The refresh token now takes the 
place of the long-lived token, but 
instead of it being used to obtain 
resources, it’s used only to get 
new access tokens that, in 
turn, can get the resources.
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Building a simple OAuth client

70

, use the authorization code grant 
type to get a bearer access token 
from an authorization server, and 
use that token with a protected 
resource

client identifier

An OAuth client is identified by a 
special string known as the client 
identifier
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confidential client
71

it has a shared secret that it 
stores in order to authenticate 
itself when talking with the 
authorization server, known as 
the client_secret

redirect_uri

a set of scopes to request,
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these are determined by the client 
software and not assigned by the 
authorization server.

our client needs to know 
which server it’s talking to

our client needs to know the 
locations of both the 
authorization endpoint and the 
token endpoint
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Get a token using the 
authorization code grant

Get a token using the 
authorization code grant type

73

For an OAuth client to get a token 
from an authorization server, it 
needs to be delegated authority 
by a resource owner in one form 
or another

interactive form of delegation
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Steps

the client sends the resource 
owner (which in our case is the 
end user at the client) over to the 
authorization server’s 
authorization endpoint
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The server then sends an 
authorization code back to the 
client through its redirect_uri
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The client finally sends the 
code that it received to the 
authorization server’s token 
endpoint to receive an 
OAuth access token, which 
it needs to parse and store

this authorization code and send 
it directly to the token endpoint
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If the request is successful, the 
authorization server will return a 
JSON object which includes the 
access token value
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SAML

What is SAML, and why 
does it exist?

SAML is a protocol for 
authenticating to web applications

1

0Auth 2.0

What is the difference 
between SAML and 
SSO?

If you think of single sign-on 
(SSO) as “one password to rule 
them all,” think of SAML as the 
glue that binds them all together. 
SAML

2

How does SAML work?

for an example with Software 
User Stu, who wants to log in to 
Salesforce. Software as a 
Service: 

1. Stu first navigates to a 
dashboard his company has 
configured, where he’s asked to 
authenticate (username + 
password + two-factor) and then 
can see all the applications he 
has access to. The login process 
and dashboard are part of the 
identity provider; its main purpose 
is to verify Stu’s identity.

2. Next, Stu clicks on the 
Salesforce icon and is signed into 
Salesforce. Salesforce is the 
service provider; it’s the thing Stu 
ultimately wants access to.

3

SAML protocol
3

Identity Provider (IdP)

The software tool or service 
(often visualized by a login page 
and/or dashboard) that performs 
the authentication: checking 
usernames and passwords, 
verifying account status, invoking 
two-factor, etc.

3

authority

a role in the SAML authentication 
workflow, relative to the SP. The 
IdP is simply an authority that the 
SP trusts

4

Service Provider (SP)

The web application where the 
user is trying to gain access.

3

SAML Assertion or SAML 
Token

A message asserting a user’s 
identity and often other attributes, 
sent over HTTP via browser 
redirects

3

Steps

IdP-initiated

5

user first navigating to the IdP

5

authentication by the IdP

IdPs ask for a user’s credentials, 
but they can also ask for 
certificates, invoke twofactor 
authentication, require the user 
be on a particular network—and, 
you guessed it, they can even 
redirect the user somewhere else 
to have the user pass yet even 
more tests. What an IdP does to 
verify a user’s identity is 
configured by the user’s company 
and can be influenced (or limited) 
by capabilities of the IdP solution 
itself

4

verification of the SAML 
Assertion by the SP

verification entailed Salesforce 
checking the SAML assertion to 
make sure it came from the IdP 
that Salesforce trusts. In addition 
to checking the authenticity and 
validity of the SAML assertion, 
Salesforce also looks in the 
SAML assertion to see who Stu is 
and who he should be logged into 
Salesforce as

5

SP-initiated

5

user first navigating to the SP

6

getting redirected to the IdP with 
a SAML request

6

SAML request

A SAML request says, “This user 
is trying to log in, but they don’t 
have a SAML assertion yet. 
Please help them get a SAML 
assertion, then send them back 
here.”

6

then redirected back to the SP 
with a SAML assertion

6

How to set up SAML

6

IdP configuration

The IdP needs to be configured 
so it knows where and how to 
send users when they want to log 
in to a specific SP.

7

Specifications for a SAML 
assertion - what it should contain 
and how it should be formatted - 
are provided by the SP and set 
at the IdP

7

EntityID

7

Assertion Consumer Service 
(ACS)

7

ACS Validator

7

Attributes

8

RelayState

8

SAML Signature Algorithm

8

SP Configuration

The SP needs to be configured 
so it knows it can trust SAML 
assertions signed by the IdP

7

X.509 Certificate

8

Issuer URL

8

SAML SSO Endpoint / Service 
Provider Login URL

9

SAML SLO (Single Log-Out) 
Endpoint

9

Group

Application and service 
principal objects in 
Microsoft Entra ID

1

Application registration
1

When you register your 
application with Microsoft Entra 
ID, you're creating an identity 
configuration for your application 
that allows it to integrate with 
Microsoft Entra ID.

Purpose

To delegate identity and access 
management functions to 
Microsoft Entra ID

1

Application object

A Microsoft Entra application is 
defined by its one and only 
application object, which resides 
in the Microsoft Entra tenant 
where the application was 
registered

1

Relationship between 
application objects and service 
principals

Purpose

An application object is used as a 
template or blueprint to create 
one or more service principal 
objects

1

Blueprint describes three 
aspects

The application object describes 
three aspects of an application:

1

How the service can issue tokens 
in order to access the application 

The resources that the application 
might need to access 

The actions that the application 
can take

Service principal object

To access resources that are 
secured by a Microsoft Entra 
tenant, the entity that requires 
access must be represented by a 
security principal

2

This requirement is true for 
both users (user principal) and 
applications (service principal).

Relationship between 
application objects and service 
principals

Purpose

To access resources that are 
secured by a Microsoft Entra 
tenant

2

The security principal defines the 
access policy and permissions for 
the user/application in the 
Microsoft Entra tenant

three types of service 
principal

2

Application

This type of service principal is 
the local representation, or 
application instance, of a global 
application object in a single 
tenant or directory

2

a concrete instance created 
from the application

Purpose

A service principal is created in 
each tenant where the application 
is used and references the 
globally unique app object

3

The service principal object 
defines what the app can actually 
do in the specific tenant, who can 
access the app, and what 
resources the app can access

Managed identity

Managed identities eliminate the 
need for developers to manage 
credentials

3

Legacy

represents a legacy app, which is 
an app created before app 
registrations were introduced

3

Relationship between 
application objects and 
service principals

4

Application object

Service principal object
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