
OAuth 2.0

0Auth 2.0

What is SAML, and why does it
exist?

What is OAuth 2.0?

OAuth 2.0 is a delegation
protocol, a means of letting
someone who controls a resource
allow a software application to
access that resource on their
behalf without impersonating
them.

30

Token

The application requests
authorization from the owner

30

of the resource and receives
tokens that it can use to access
the resource

OAuth tokens can limit the client’s
access to only the actions that the
resource owner has delegated.

31

Anology: Valet key

you can think of the OAuth token
as a “valet key” for the web

31

The valet key of a car allows the
owner of the car to give limited
access to someone, the valet,
without handing over full control
in the form of the owner’s key

33 Definition

The OAuth 2.0 authorization
framework enables a third-party
application to obtain limited
access to an HTTP service, either
on behalf of a resource owner by
orchestrating an approval
interaction between the resource
owner and the HTTP service, or
by allowing the third-party
application to obtain access on its
own behalf

32

History

The bad old days:
credential sharing (and
credential theft)

34

Delegating access

Summary

What if we were able to have this
kind of limited credential, issued
separately for each client and
each user combination, to be
used at a protected resource? We
could then tie limited rights to
each of these limited credentials.
What if there were a
networkbased protocol that
allowed the generation and
secure distribution of these
limited credentials across security
boundaries in a way that’s both
user-friendly and scalable to the
internet as a whole?

38

password antipattern

a shared secret (the password)
directly represents the party in
question (the user)

40

copy the user’s
credentials and replay
them on another service

This approach requires that the
user have the same credentials at
the client application and the
protected resource, which limits
the effectiveness of this
credential-theft technique to a
single security domain.

34

what if the two services occupied
different security domains,

35

To keep accessing the API, the
client application will store the
user’s credentials so that they
can be replayed as needed. This
is an extremely dangerous
practice, since the compromise
of any client in use will lead to
a full compromise of that
user’s account across all
systems

developer key

the developer key acts as a kind
of universal key that allows the
client to impersonate any user
that it chooses

37

the client effectively has free rein
over the data on the protected
resource.

37

give users a special
password

37

Users don’t use this password to
log in themselves, but paste it into
applications that they want to
work for them

This requires the user to
generate, distribute, and manage
these special credentials in
addition to the primary passwords
they already must curate

37

Since it’s the user who must
manage these credentials, there
is also, generally speaking, no
correlation between the client
program and the credential
itself. This makes it difficult to
revoke access to a specific
application

37

Delegating access

OAuth is a protocol designed to
do exactly that: in OAuth, the end
user delegates some part of their
authority to access the protected
resource to the client application
to act on their behalf

38

Summary
47

authorization server
38

This is the component that
enables delegation

The authorization server (AS) is
trusted by the protected resource
to issue specialpurpose security
credentials—called OAuth access
tokens—to clients

Journey
38

At no time in this process are the
resource owner’s credentials
exposed to the client

Clients can then manage the
tokens, and users can manage
the client applications

To acquire a token, the client first
sends the resource owner to the
authorization server in order to
request that the resource owner
authorize this client

38

The resource owner
authenticates to the authorization
server and is generally presented
with a choice of whether to
authorize the client making the
request

38

The client is able to ask for a
subset of functionality, or scopes,
which the resource owner may be
able to further diminish

38

Once the authorization grant has
been made, the client can then
request an access token from the
authorization server

38

This access token can be used at
the protected resource to access
the API, as granted by the
resource owner

38

it is a delegation protocol

41

Generally, a subset of a user’s
authorization is delegated, but
OAuth itself doesn’t carry or
convey the authorizations.
Instead, it provides a means by
which a client can request that a
user delegate some of their
authority to it. The user can then
approve this request, and the
client can then act on it with the
results of that approval

41

TOFU: Trust On First Use

In a TOFU model, the first time a
security decision needs to be
made at runtime

42

The system offers to remember
this decision for later use. In other
words, the first time an
authorization context is met, the
system can be directed to trust
the user’s decision for later
processing: Trust On First Use

43

What OAuth 2.0 isn’t

45

OAuth isn’t defined
outside of the HTTP
protocol.

Sensitive secrets and information
are passed over the wire, and
OAuth requires a transport layer
mechanism such as TLS to
protect these secrets

45

OAuth isn’t an
authentication protocol

OAuth transaction on its own tells
you nothing about who the user
is, or even if they’re there

46

OAuth doesn’t define
a token format

the content of the token is
completely opaque to the
client application

This is a departure from previous
security protocols such as WS-*,
Security Assertion Markup
Language (SAML)

46

However, the token still
needs to be understood by
the authorization server that
issues it and the protected
resource that accepts it

led to the development of the
JSON Web Token (JWT)

46

HTTP Basic Auth
40

HTTP Digest Auth

This all makes sense in light of
HTTP’s origins as a document
access protocol

both assume the presence of a
user

40

Not good for.....

for direct-access APIs

40 Solution

OAuth was designed from the
outset as a protocol for use with
APIs

41

effectively require the
presentation of a username and
password to the HTTP server

40

assumed that these credentials
will be presented again on every
single transaction

40

The OAuth dance

48

two major steps

two major steps to an OAuth
transaction: issuing a token and
using a token.

48

the canonical OAuth
transaction

49

OAuth 2.0 authorization grant in
detail

authorization
endpoint

Since we have a web client,
this takes the form of an
HTTP redirect to the
authorization server’s
authorization endpoint. The
response from the client
application looks like this

This redirect to the browser
causes the browser to send an
HTTP GET to the authorization
server.

52

Resource owner
authenticates to the
authorization server

The user’s authentication passes
directly between the user (and
their browser) and the
authorization server; it’s never
seen by the client application.
This essential aspect protects
the user from having to share
their credentials with the client
application

53

Resource owner
authorizes the client

OAuth doesn’t dictate the
authentication technology, and
the authorization server is free to
choose methods such as a
username/password pair,
cryptographic certificates, security
tokens, federated single-sign-on,
or any number of other
possibilities

53

Authorization server
redirects resource
owner back to the
client with an
authorization code

Client sends the
authorization code to
the authorization
server’s token
endpoint

ensures that the client can
authenticate itself directly
without other components
being able to see or
manipulate the token
request

passing its client_id and
client_secret

55

Authorization server
issues an OAuth
access token to the
client

The authorization server
takes in this request and, if
valid, issues a token

. If the authorization code is valid,
has not been used previously,
and the client making this request
is the same as the client that
made the original request, the
authorization server generates
and returns a new access token
for the client

56

The client can store this access
token in a secure place for as
long as it wants to use the token,
even after the user has left

56

bearer tokens

anyone who carries the token has
the right to use it.

57

Client accesses the
protected resource using
the access token

57

OAuth’s actors

58

client

a piece of software that
attempts to access the
protected resource on
behalf of the resource
owner

the client is generally the simplest
component in an OAuth system

58

its responsibilities are largely
centered on obtaining tokens
from the authorization server and
using tokens at the protected
resource

58

protected resource

available through an HTTP
server and it requires an
OAuth token to be accessed

needs to validate the tokens
presented to it and determine
whether and how to serve
requests

58

resource owner

the entity that has the
authority to delegate access
to the client

is the person using the client
software

58

authorization server

an HTTP server that acts as
the central component to an
OAuth system

The authorization server
authenticates the resource
owner and client, provides
mechanisms for allowing
resource owners to authorize
clients, and issues tokens to the
client

59

OAuth’s components
59

These are the bits that connect
the actors in the previous section
in a larger protocol

Access tokens

is an artifact issued by the
authorization server to a client
that indicates the rights that the
client has been delegated.

59 represents

the combination of the client’s
requested access, the resource
owner that authorized the client,
and the rights conferred during
that authorization

59

client

opaque to the client

59

authorization server’s

the authorization server’s job is to
issue the token

59

protected resource’s

the protected resource’s job is to
validate the token

59

Scopes

a representation of a set of rights
at a protected resource.

59

Refresh tokens

the token is never sent to the
protected resource.

60

the client uses the refresh token
to request new access tokens
without involving the resource
owner

Why

In OAuth, an access token
could stop working for a
client at any point

what if the resource owner’s
no longer there

tokens in OAuth 1.0 tended to live
forever until explicitly revoked

61

In OAuth 2.0, access tokens
were given the option to
expire automatically

The refresh token now takes the
place of the long-lived token, but
instead of it being used to obtain
resources, it’s used only to get
new access tokens that, in
turn, can get the resources.

61

Building a simple OAuth client

70

, use the authorization code grant
type to get a bearer access token
from an authorization server, and
use that token with a protected
resource

client identifier

An OAuth client is identified by a
special string known as the client
identifier

71

confidential client
71

it has a shared secret that it
stores in order to authenticate
itself when talking with the
authorization server, known as
the client_secret

redirect_uri

a set of scopes to request,

72

these are determined by the client
software and not assigned by the
authorization server.

our client needs to know
which server it’s talking to

our client needs to know the
locations of both the
authorization endpoint and the
token endpoint

72

Get a token using the
authorization code grant

Get a token using the
authorization code grant type

73

For an OAuth client to get a token
from an authorization server, it
needs to be delegated authority
by a resource owner in one form
or another

interactive form of delegation

73

Steps

the client sends the resource
owner (which in our case is the
end user at the client) over to the
authorization server’s
authorization endpoint

73

The server then sends an
authorization code back to the
client through its redirect_uri

73

The client finally sends the
code that it received to the
authorization server’s token
endpoint to receive an
OAuth access token, which
it needs to parse and store

this authorization code and send
it directly to the token endpoint

76

If the request is successful, the
authorization server will return a
JSON object which includes the
access token value

77

SAML

What is SAML, and why
does it exist?

SAML is a protocol for
authenticating to web applications

1

0Auth 2.0

What is the difference
between SAML and
SSO?

If you think of single sign-on
(SSO) as “one password to rule
them all,” think of SAML as the
glue that binds them all together.
SAML

2

How does SAML work?

for an example with Software
User Stu, who wants to log in to
Salesforce. Software as a
Service:

1. Stu first navigates to a
dashboard his company has
configured, where he’s asked to
authenticate (username +
password + two-factor) and then
can see all the applications he
has access to. The login process
and dashboard are part of the
identity provider; its main purpose
is to verify Stu’s identity.

2. Next, Stu clicks on the
Salesforce icon and is signed into
Salesforce. Salesforce is the
service provider; it’s the thing Stu
ultimately wants access to.

3

SAML protocol
3

Identity Provider (IdP)

The software tool or service
(often visualized by a login page
and/or dashboard) that performs
the authentication: checking
usernames and passwords,
verifying account status, invoking
two-factor, etc.

3

authority

a role in the SAML authentication
workflow, relative to the SP. The
IdP is simply an authority that the
SP trusts

4

Service Provider (SP)

The web application where the
user is trying to gain access.

3

SAML Assertion or SAML
Token

A message asserting a user’s
identity and often other attributes,
sent over HTTP via browser
redirects

3

Steps

IdP-initiated

5

user first navigating to the IdP

5

authentication by the IdP

IdPs ask for a user’s credentials,
but they can also ask for
certificates, invoke twofactor
authentication, require the user
be on a particular network—and,
you guessed it, they can even
redirect the user somewhere else
to have the user pass yet even
more tests. What an IdP does to
verify a user’s identity is
configured by the user’s company
and can be influenced (or limited)
by capabilities of the IdP solution
itself

4

verification of the SAML
Assertion by the SP

verification entailed Salesforce
checking the SAML assertion to
make sure it came from the IdP
that Salesforce trusts. In addition
to checking the authenticity and
validity of the SAML assertion,
Salesforce also looks in the
SAML assertion to see who Stu is
and who he should be logged into
Salesforce as

5

SP-initiated

5

user first navigating to the SP

6

getting redirected to the IdP with
a SAML request

6

SAML request

A SAML request says, “This user
is trying to log in, but they don’t
have a SAML assertion yet.
Please help them get a SAML
assertion, then send them back
here.”

6

then redirected back to the SP
with a SAML assertion

6

How to set up SAML

6

IdP configuration

The IdP needs to be configured
so it knows where and how to
send users when they want to log
in to a specific SP.

7

Specifications for a SAML
assertion - what it should contain
and how it should be formatted -
are provided by the SP and set
at the IdP

7

EntityID

7

Assertion Consumer Service
(ACS)

7

ACS Validator

7

Attributes

8

RelayState

8

SAML Signature Algorithm

8

SP Configuration

The SP needs to be configured
so it knows it can trust SAML
assertions signed by the IdP

7

X.509 Certificate

8

Issuer URL

8

SAML SSO Endpoint / Service
Provider Login URL

9

SAML SLO (Single Log-Out)
Endpoint

9

Group

Application and service
principal objects in
Microsoft Entra ID

1

Application registration
1

When you register your
application with Microsoft Entra
ID, you're creating an identity
configuration for your application
that allows it to integrate with
Microsoft Entra ID.

Purpose

To delegate identity and access
management functions to
Microsoft Entra ID

1

Application object

A Microsoft Entra application is
defined by its one and only
application object, which resides
in the Microsoft Entra tenant
where the application was
registered

1

Relationship between
application objects and service
principals

Purpose

An application object is used as a
template or blueprint to create
one or more service principal
objects

1

Blueprint describes three
aspects

The application object describes
three aspects of an application:

1

How the service can issue tokens
in order to access the application

The resources that the application
might need to access

The actions that the application
can take

Service principal object

To access resources that are
secured by a Microsoft Entra
tenant, the entity that requires
access must be represented by a
security principal

2

This requirement is true for
both users (user principal) and
applications (service principal).

Relationship between
application objects and service
principals

Purpose

To access resources that are
secured by a Microsoft Entra
tenant

2

The security principal defines the
access policy and permissions for
the user/application in the
Microsoft Entra tenant

three types of service
principal

2

Application

This type of service principal is
the local representation, or
application instance, of a global
application object in a single
tenant or directory

2

a concrete instance created
from the application

Purpose

A service principal is created in
each tenant where the application
is used and references the
globally unique app object

3

The service principal object
defines what the app can actually
do in the specific tenant, who can
access the app, and what
resources the app can access

Managed identity

Managed identities eliminate the
need for developers to manage
credentials

3

Legacy

represents a legacy app, which is
an app created before app
registrations were introduced

3

Relationship between
application objects and
service principals

4

Application object

Service principal object

marginnote4app://note/522844C7-2DDD-4758-8521-72BC6A047262
marginnote4app://note/942F311B-EE8D-4649-82E1-EF54CCF7F63A
marginnote4app://note/FED9ADA5-5251-46E4-9485-0FBC0A84335E
marginnote4app://note/1F02A1FD-81B3-4C84-9586-12691F3C1CE4
marginnote4app://note/3A40BE37-A83D-4415-B6AD-3B5AF85568CA
marginnote4app://note/418A66BE-B8F3-4222-9259-1E7B00FD8476
marginnote4app://note/E395E843-580D-4C4B-A5DD-4BDA579A85B6
marginnote4app://note/B3DAA264-7FD0-4435-83D4-973B96BD6812
marginnote4app://note/2BECE229-06E0-4905-B57C-114BED1A208C
marginnote4app://note/4623E608-0ABD-4773-A7FD-D58036051042
marginnote4app://note/1B7196C7-1977-4AE9-8A3F-A543AF20B8CC
marginnote4app://note/E0A5F161-DBD3-43B1-B81E-83BEAA0A1E7C
marginnote4app://note/339A6FC7-9D84-483F-A937-6C43BAD7D1CE
marginnote4app://note/F395EFE4-FE26-4520-825C-F8397034883D
marginnote4app://note/5E57D291-C01B-418E-84B1-6DFC9CD5B2AA
marginnote4app://note/3F5772CC-34AB-4522-A9E8-495BCC65D408
marginnote4app://note/65745D6C-C09F-4412-B9EE-99AAA7A3A9DD
marginnote4app://note/8DEBFF04-5BBB-404E-B348-27EBEC9D89CB
marginnote4app://note/747F7EB8-D269-493A-80E1-A8B5554B84E0
marginnote4app://note/7F41FC06-C447-4375-A692-3322F4E50A08
marginnote4app://note/C20C5D55-43D1-4F6C-BAEF-D12C7C650C2B
marginnote4app://note/1AA45E96-4E1F-4EEE-8DE5-89D9C509BD03
marginnote4app://note/CF538E37-90A0-4177-B3D4-1716127B52B0
marginnote4app://note/5963A97A-DEFC-45D8-9ECA-9103C34B666A
marginnote4app://note/48CCE810-0CE6-4740-A56E-4E7210732777
marginnote4app://note/8FC108FD-7E6F-48C3-9B8C-1DBEF6BC3CC9
marginnote4app://note/0AF7409E-FE47-46C7-9CA4-B105692B9A65
marginnote4app://note/ACED30FC-FC40-4830-8312-0BAE8ED25F92
marginnote4app://note/53CAA447-4009-4413-8979-C406DB37DAE7
marginnote4app://note/024167D2-4EFC-4FAC-83E0-FD869731CDC9
marginnote4app://note/0BD66C99-9FC6-4E01-9361-34F4E7244F08
marginnote4app://note/5E26B7ED-8C1E-4B65-BB05-403E58F4A8CE
marginnote4app://note/A74549B8-78DB-40D2-8A60-00FD105F841F
marginnote4app://note/47B535D3-C9BC-4B0A-9610-6D9F0775E5CE
marginnote4app://note/2C105E05-4B3C-440C-9681-95137E76E4E5
marginnote4app://note/77A8CDC1-1BFE-4493-ADE9-727A30035701
marginnote4app://note/6AE8FCAC-FA80-4E77-AB68-512DD797DD35
marginnote4app://note/0BF32399-D4C3-4EB7-8B37-452549B04815
marginnote4app://note/5402360F-B585-4880-A0A9-28204FE46DE9
marginnote4app://note/7244875D-A9FD-450E-9E3C-EC58C40A55CE
marginnote4app://note/125C180F-73EF-4578-9AA6-6BF629A2D1BA
marginnote4app://note/C379E57C-2654-4814-8CC7-13645B7DBD27
marginnote4app://note/18508675-40D7-4E5D-828A-E54AE9212F28
marginnote4app://note/ABC0A0D5-6CEB-41A9-8BA8-8985A6391EB1
marginnote4app://note/8961E279-A2AD-467A-8985-9D160DFDD544
marginnote4app://note/FC92F2AB-A140-47D1-BF92-0C9595218F5B
marginnote4app://note/80229E51-C44B-4AE4-B6AF-445003EAD418
marginnote4app://note/D9A7BD50-1D66-4EAC-8FBF-8B087EC20F5B
marginnote4app://note/6AFFE04B-E4BC-4372-AC9C-7945C9F9E755
marginnote4app://note/D63021BB-1E8F-4E06-88FD-F0437017141C
marginnote4app://note/8D62C568-7734-4484-8AC8-D5B12594DAE3
marginnote4app://note/9698A849-50E0-4667-8660-20E732DB9AAB
marginnote4app://note/2FD80101-40C2-44DB-93D6-40E9125D606D
marginnote4app://note/57323065-5AEA-45D7-A226-9B4BEAFC5287
marginnote4app://note/DE8B4BED-4ACE-47BA-BFED-BDFF739F5AB0
marginnote4app://note/52554319-10B5-4AB2-BECA-5779BF57D90C
marginnote4app://note/D48B0F9B-43AB-4D45-B5C9-9CFDEEBD35E1
marginnote4app://note/7B1E054C-84ED-4105-97AF-887147EF3ABB
marginnote4app://note/6BA8354B-4866-4D8B-8DF7-36629D73E902
marginnote4app://note/A4172744-438F-4C4C-8B0D-39B3445C64E1
marginnote4app://note/C4EB7B6D-0F25-422B-91A6-A9160F106F97
marginnote4app://note/84F08E7A-AE0F-43B0-95C4-6EAF6ED4188D
marginnote4app://note/0CE50DE5-C328-4307-A5EF-5BE63947799B
marginnote4app://note/D82256BB-8905-418F-A76A-CFBD58B43C80
marginnote4app://note/2D2EFDAA-CBFB-44EF-9C97-F7312435A509
marginnote4app://note/797043EE-AB48-4F4B-8976-5305733B818E
marginnote4app://note/A8C06C2A-3588-44F9-9AD2-3A825F6F9325
marginnote4app://note/BBE9F529-EB98-405B-A3DD-2413B76FF6B9
marginnote4app://note/09799598-C609-4A09-897A-968846059F60
marginnote4app://note/64AC8D8F-8F61-4413-997D-8D96A6C64392
marginnote4app://note/55A66DA9-4272-4F00-AE99-F4878E808ECA
marginnote4app://note/6580D674-0D69-4017-895D-4455B1734693
marginnote4app://note/D108FDB9-CC37-475E-ADCB-E737EB35D35F
marginnote4app://note/A72F8B07-D604-46F8-AE53-3DDFE1A41C32
marginnote4app://note/7C3BEC5A-A59C-4C5C-AD9D-38CBECA8C03B
marginnote4app://note/DAE81F10-C158-4216-B286-FADF51AD46D5
marginnote4app://note/03F9DB15-7736-46F5-9E87-94F2D213D618
marginnote4app://note/DD8DA4B2-4183-4373-8021-C372928347B1
marginnote4app://note/7A003C89-D1A0-4DE3-A3D0-D5140D44DF85
marginnote4app://note/6F95752E-9122-40F5-A3C8-2E0DE44886B7
marginnote4app://note/E10B4D1D-B87E-485D-B8A0-6E1783477C15
marginnote4app://note/8998DEBF-AD88-4705-A6F3-74A0394980BF
marginnote4app://note/6435BE63-DEC1-409B-99E7-F76E65BF6F68
marginnote4app://note/3A79AC49-89D7-40EB-B9AB-F640757FC011
marginnote4app://note/58880521-6914-42FF-B530-FC1EDD5D88B1
marginnote4app://note/122BE4C6-BA19-4B31-BB27-87503480919F
marginnote4app://note/D6AA4F83-8042-4D4C-BCC8-8892D51D6455
marginnote4app://note/C5D2321A-A845-4144-A9D9-998DEE3A3ABF
marginnote4app://note/50AD6D96-3B3D-45D1-96DB-002CFA95CB19
marginnote4app://note/6DEAE6F3-86D6-4902-9EE2-2CA2CD36D9C2
marginnote4app://note/AC571436-31C7-4361-9EC9-CDFDDC98A3D7
marginnote4app://note/D1EE6946-97D1-41C9-B13B-0E91A94773CA
marginnote4app://note/86EC976E-D537-4A8F-A756-3AED465C3D7B
marginnote4app://note/5B748C61-5E51-4A66-AB49-DADE94A44D52
marginnote4app://note/F2095E97-826E-4DB9-8A11-4EBBC52842E7
marginnote4app://note/C239359F-642A-48B6-BB28-7453B39FAF24
marginnote4app://note/AC180EB0-BA11-4096-B173-CE963048237E
marginnote4app://note/748ECD9E-7630-4D13-8030-30642038FEAC
marginnote4app://note/648AD4AE-E1FA-454F-A8B3-C093E47F6051
marginnote4app://note/E76D44FE-AFFE-468E-B553-D18E32527D7D
marginnote4app://note/3F1734C3-26DF-4FDB-8D74-FE77D6EAB33C
marginnote4app://note/875A1928-31D0-4C62-A03B-2C2A35D2E11E
marginnote4app://note/940C1031-46B0-497F-84ED-C1C56C9A67D0
marginnote4app://note/B55CFCB3-D276-4B0F-9274-B148DA9DEDC2
marginnote4app://note/3FAFBB23-9DCC-4A3D-8AA7-83EF7AFF7874
marginnote4app://note/8E587275-1544-4673-B171-BD49401ADE8F
marginnote4app://note/0BA576F6-7B31-4DE0-B633-2947F7197512
marginnote4app://note/1939A6F0-03FD-44D3-A1AD-117C948111D0
marginnote4app://note/CEC2F825-0B4E-4287-9C93-6A43DE26E440
marginnote4app://note/97C2375D-8720-406E-B716-A70F5D463C90
marginnote4app://note/46EC4B9B-3202-426A-B693-4B9B3565AFDA
marginnote4app://note/582A1BD2-75B0-4019-A6C2-9DC02ECE9AC8
marginnote4app://note/955BB1FB-871A-461B-B2E4-F2D4AB9BCF2E
marginnote4app://note/E0F47C8F-9A29-4713-B5C1-36E7D4DC4E1E
marginnote4app://note/113EE03E-D4FA-4E28-81CA-F67F8BD225CB
marginnote4app://note/B2309892-4FF0-42D9-A03C-D1CCC4220FCA
marginnote4app://note/FAC30117-999C-4B11-A7A9-E72BBF2F8B2B
marginnote4app://note/9EDBACAD-0CF8-465B-B7FD-34BFD94F5283
marginnote4app://note/00E98562-2708-4A2A-80DA-6A107951764F
marginnote4app://note/6F44DA6F-608C-4C43-9432-267FAB1ADE80
marginnote4app://note/90454CB2-39D1-4974-91BA-FA1CC8C61C7C
marginnote4app://note/1ECE96CE-6153-44D0-8CA3-E2960DA5009F
marginnote4app://note/DDB63D9F-FD54-4608-B057-76886CD64A5C
marginnote4app://note/C82EA8FB-2758-4884-8053-7926E98D8400
marginnote4app://note/8CBEC1B7-0DE0-4916-9B05-1C86C26EE77E
marginnote4app://note/698993C4-6C87-467B-B39D-4A3D18897637
marginnote4app://note/9F16D022-146D-40A2-92EE-94B354201E25
marginnote4app://note/32568489-3C6A-48F6-A138-74C181565B6B
marginnote4app://note/5AF1924A-3A46-4EA6-A0AE-6EF93E2A67E0
marginnote4app://note/CA6FB057-C627-429E-BBE5-9FFEADEF8EB9
marginnote4app://note/38A2342F-BBC7-469B-ACB7-D62C8975A3EB
marginnote4app://note/F9B80438-2E27-4AC8-AF1F-E55FF735A2B9
marginnote4app://note/61BF33B9-DD8D-4789-BABB-E0EDEBCE66CE
marginnote4app://note/E93EDA8D-4CBC-4F45-8766-226962EB5A3F
marginnote4app://note/38A8DBF3-058B-4703-9AFE-15209983ED13
marginnote4app://note/4B6B13F5-A2A5-4C5C-8818-519987AF2951
marginnote4app://note/898E4E4D-9E19-48DF-B691-842F9C2DE153
marginnote4app://note/D924E81C-D579-4FA9-91C3-AE63DB6EC6A7
marginnote4app://note/45CEFF04-E579-4A13-BC11-E554EE8BC1F6
marginnote4app://note/9E6D038B-0AAC-47E4-A5D6-314C6DC554DB
marginnote4app://note/FFC41ABC-43E3-44F6-8D8C-8B4A80A76471
marginnote4app://note/E69783D9-397D-4F56-9D0E-9DF5782B311A
marginnote4app://note/F955A459-C417-4916-ACC9-05C82B1F336F
marginnote4app://note/7C8B149A-9E25-4DCF-882B-F63BC5254A45
marginnote4app://note/F0BFA36F-FCD0-4DC5-9767-28965EF7A728
marginnote4app://note/22426B14-5BC3-4A6D-88D3-34DE191A78F9
marginnote4app://note/3586B7FB-8B11-48AF-8A1C-EFCCF4A79495
marginnote4app://note/DE0DC272-6968-476B-B11A-3BBA9776AF10

